Netflix如何使用Druid以确保高质量的体验
在不断推动创新技术更新的同时,确保Netflix始终如一的出色体验绝非易事。我们如何才能确信更新不会伤害我们的用户?当我们打算做的时候,我们真的在做可衡量的改进? 使用回放设备的实时日志作为事件源,我们得出测量结果,以便理解和量化用户的设备如何无缝地处理浏览和回放。 一旦我们有了这些措施,我们就把它们输入数据库。每一项测量都会标记出使用哪种设备的匿名细节,例如,该设备是智能电视、iPad还是And
在不断推动创新技术更新的同时,确保Netflix始终如一的出色体验绝非易事。我们如何才能确信更新不会伤害我们的用户?当我们打算做的时候,我们真的在做可衡量的改进? 使用回放设备的实时日志作为事件源,我们得出测量结果,以便理解和量化用户的设备如何无缝地处理浏览和回放。 一旦我们有了这些措施,我们就把它们输入数据库。每一项测量都会标记出使用哪种设备的匿名细节,例如,该设备是智能电视、iPad还是And
在本文中,我们将对Apache Druid框架有一个完整的概述,从什么是timeseries(时间序列)开始,我们如何处理此类数据,以及对其体系结构的描述。最后,我们将看到如何在平台内接收和查询数据。 时间序列 时间序列是按时间顺序排列的数据点序列。 这些离散点通常被存储和分析,以便做出预测或发现行为模式。在常见的大数据体系结构中,标准方法是收集来自各种来源的数据(用户数据、应用程序数据、web分